Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Plants (Basel) ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611496

RESUMO

BACKGROUND: The 2015 Nobel Prize in Medicine, awarded for the discovery of artemisinin in Artemisia annua, reignited interest in aromatic plants, including Artemisia absinthium L. This article delves into the historical, ethnopharmacological and medicinal significance of A. absinthium, examining its bitter taste noted since ancient Greek times and its association with medicinal properties throughout history. Despite being banned in the 20th century due to perceived health risks; recent research has led to the reconsideration of A. absinthium's potential applications. This study focuses on the prebiotic efficacy of essential oils (EOs) from two Artemisia species: A. absinthium and A. annua. MATERIALS AND METHODS: A broth microdilution test, growth curve test and in vivo models were used to study the impact of low doses (from 0.5% v/v to 0.00048 v/v) of Artemisia spp-EO on the three probiotic strains (Lactobacillus, Lactobacillus casei and Saccharomyces boulardii). RESULTS: These essential oils, when used in minimal concentrations (lower than 0.06% v/v), are safe and exhibit prebiotic effects on major probiotic strains, supporting the traditional culinary use of Artemisia spp. CONCLUSION: This research opens avenues for potential applications in the food industry, emphasizing the need for further exploration into the prebiotic properties of Artemisia spp-EOs and their influence on the microbiota.

2.
Chem Biodivers ; : e202302075, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527165

RESUMO

The present study investigated the role of a commercial formulation constituted by herbal extracts from Rhodiola rosea, Undaria pinnatifida, Tribulus terrestris, and Moringa oleifera. The formulation was analysed for determining the content in total phenols and flavonoids and scavenging/reducing properties. The formulation was also tested on isolated mouse hypothalamus in order to investigate effects on serotonin, dopamine, neuropeptide Y (NPY), and orexin A. The gene expression of gonadrotopin releasing hormone (GnRH) was also assayed. The formulation was able to reduce dopamine and serotonin turnover, and this could be related, albeit partially, to the capability of different phytochemicals, among which hyperoside and catechin to inhibit monoaminooxidases activity. In parallel, the formulation was effective in reducing the gene expression of NPY and orexin-A and to improve the gene expression of GnRH. In this context, the increased GnRH gene expression induced by the formulation may contribute not only to improve the resistance towards the stress related to ageing, but also to prevent the reduction of libido that could be related with a stimulation of the serotoninergic pathway. According to the in silico analysis, hyperoside could play a pivotal role in modulating the gene expression of GnRH. Regarding NPY and orexin A gene expression, no direct interactions between the formulation phytochemicals and these neuropeptides were anticipated; thus, suggesting that the pattern of gene expression observed following exposure of the hypothalamus to the formulation may be secondary to inhibitory effects of dopamine and serotonin turnover. Concluding, the present study demonstrated the efficacy of the formulation in exerting neuromodulatory effects at the hypothalamic level; thus, suggesting the potential to contrast stress and fatigue.

3.
Sci Rep ; 14(1): 3344, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336904

RESUMO

Endoscopic Retrograde Cholangio-Pancreatography (ERCP) with biliary stenting is a minimally invasive medical procedure employed to address both malignant and benign obstructions within the biliary tract. Benign biliary strictures (BBSs), typically arising from surgical interventions such as liver transplants and cholecystectomy, as well as chronic inflammatory conditions, present a common clinical challenge. The current gold standard for treating BBSs involves the periodic insertion of plastic stents at intervals of 3-4 months, spanning a course of approximately one year. Unfortunately, stent occlusion emerges as a prevalent issue within this treatment paradigm, leading to the recurrence of symptoms and necessitating repeated ERCPs. In response to this clinical concern, we initiated a pilot study, delving into the microbial composition present in bile and on the inner surfaces of plastic stents. This investigation encompassed 22 patients afflicted by BBSs who had previously undergone ERCP with plastic stent placement. Our preliminary findings offered promising insights into the microbial culprits behind stent occlusion, with Enterobacter and Lactobacillus spp. standing out as prominent bacterial species known for their biofilm-forming tendencies on stent surfaces. These revelations hold promise for potential interventions, including targeted antimicrobial therapies aimed at curtailing bacterial growth on stents and the development of advanced stent materials boasting anti-biofilm properties.


Assuntos
Sistema Biliar , Colestase , Humanos , Bile , Projetos Piloto , Resultado do Tratamento , Colestase/cirurgia , Colangiopancreatografia Retrógrada Endoscópica/métodos , Stents , Estudos Retrospectivos
4.
Sci Rep ; 14(1): 285, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168599

RESUMO

The application of essential oils as potential alternatives to antibiotics in swine semen storage is promising, due to their antioxidant and antibacterial properties. However, detrimental effects on spermatozoa should be clarified first. The aim of this study was to evaluate 9 essential oils (EOs; Satureja montana, Pelargonium graveolens, Cymbopogon nardus, Melaleuca leucadendron, Eucaliptus globulus, Citrus limon, Lavandula angustifolia, Lavandula hybrida, Mentha piperita) and a blend (GL mix) on key morpho-functional parameters of swine spermatozoa. Test compounds were firstly chemo-characterized and experimental doses were prepared by suspending a fixed number of spermatozoa with 3 different concentrations (0.1, 0.5, 1 mg/mL) of EOs. Experimental doses were stored at 16 °C and sampled after 3 and 120 h for analysis. Overall, S. montana, P. graveolens and L. angustifolia EOs induced the strongest alterations, with C. nardus and E. globulus EOs being the best tolerated. Swine spermatozoa represent a good preliminary testing platform to screen toxicity and its different patterns. The comprehensive overview on the potential mechanisms of action of some of the most common EOs, despite of the direct aim of the study being swine reproduction, may be exploited in other fields of research within both veterinary and human medicine.


Assuntos
Lavandula , Óleos Voláteis , Masculino , Suínos , Humanos , Animais , Óleos Voláteis/farmacologia , Refrigeração , Espermatozoides , Antibacterianos/farmacologia
5.
Food Res Int ; 175: 113654, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129017

RESUMO

"Sulmona Red Garlic" is a well-known Italian traditional product. Bulbs, used for culinary purposes, have been largely investigated for their medicinal properties whereas aerial bulbils are usually removed as waste material. Here, for the first time, chemical composition and biological properties of the hydroalcoholic extract from aerial bulbils were investigated. Complementary information on metabolite composition were obtained using both NMR based untargeted and HPLC-DAD targeted methodologies. The NMR analysis revealed the presence of sugars, organic acids, amino acids, organosulphur compounds (methiin, alliin, allicin and cycloalliin), and other secondary metabolites. In particular, methiin and alliin were identified for the first time in the NMR spectra of aerial bulbil garlic extracts. Polyphenol content was determined by HPLC-DAD analysis: catechin, chlorogenic acid, and gallic acid turned out to be the most abundant phenolics. Hydroalcoholic extract blocked cell proliferation of colon cancer cell line HCT116 with an IC50 of 352.07 µg/mL, while it was non-toxic to myoblast cell line C2C12. In addition, it caused seedling germination reduction of two edible and herbaceous dicotyledon species, namely Cichorium intybus and C. endivia. Moreover, the same extract reduced the gene expression of TNF-α (tumor necrosis factor), HIF1-α (hypoxia-inducible factor), VEGFA (vascular endothelial growth factor), and transient receptor potential (TRP) M8 (TRPM8) indicating the ability to contrast cancer development through the angiogenic pathway. Final, in silico experiments were also carried out supporting the biological effects of organosulphur compounds, particularly alliin, which may directly interact with TRPM8. The results here reported suggest the potential use of garlic aerial bulbils often considered a waste product as a source in phytotherapeutic remedies.


Assuntos
Neoplasias do Colo , Alho , Alho/química , Ecótipo , Fator A de Crescimento do Endotélio Vascular/genética , Extratos Vegetais/farmacologia , Antioxidantes , Compostos de Enxofre/farmacologia , Compostos de Enxofre/análise , Neoplasias do Colo/patologia
6.
Plants (Basel) ; 12(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446996

RESUMO

Researchers have explored natural products to combat the antibiotic resistance of various microorganisms. Cinnamaldehyde (CIN), a major component of cinnamon essential oil (CC-EO), has been found to effectively inhibit the growth of bacteria, fungi, and mildew, as well as their production of toxins. Therefore, this study aimed to create a delivery system for CIN using PLGA microparticles (CIN-MPs), and to compare the antifungal activity of the carried and free CIN, particularly against antibiotic-resistant strains of Candida spp. The first part of the study focused on synthesizing and characterizing the PLGA MPs, which had no toxic effects in vivo and produced results in line with the existing literature. The subsequent experiments analyzed the antifungal effects of MPs-CIN on Candida albicans and Candida glabrata, both resistant (R) and sensitive (S) strains and compared its efficacy with the conventional addition of free CIN to the culture medium. The results indicated that conveyed CIN increased the antifungal effects of the product, particularly towards C. albicans R. The slow and prolonged release of CIN from the PLGA MPs ensured a constant and uniform concentration of the active principle within the cells.

7.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259419

RESUMO

Candida parapsilosis is the major non-C. albicans species involved in the colonization of central venous catheters, causing bloodstream infections. Biofilm formation on medical devices is considered one of the main causes of healthcare-associated infections and represents a global public health problem. In this context, the development of new nanomaterials that exhibit anti-adhesive and anti-biofilm properties for the coating of medical devices is crucial. In this work, we aimed to characterize the antimicrobial activity of two different coated-surfaces, graphene oxide (GO) and curcumin-graphene oxide (GO/CU) for the first time, against C. parapsilosis. We report the capacity of GO to bind and stabilize CU molecules, realizing a homogenous coated surface. We tested the anti-planktonic activity of GO and GO/CU by growth curve analysis and quantification of Reactive Oxigen Species( ROS) production. Then, we tested the antibiofilm activity by adhesion assay, crystal violet assay, and live and dead assay; moreover, the inhibition of the formation of a mature biofilm was investigated by a viability test and the use of specific dyes for the visualization of the cells and the extra-polymeric substances. Our data report that GO/CU has anti-planktonic, anti-adhesive, and anti-biofilm properties, showing a 72% cell viability reduction and a decrease of 85% in the secretion of extra-cellular substances (EPS) after 72 h of incubation. In conclusion, we show that the GO/CU conjugate is a promising material for the development of medical devices that are refractory to microbial colonization, thus leading to a decrease in the impact of biofilm-related infections.

8.
Nanomaterials (Basel) ; 13(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37242002

RESUMO

The increasing resistance of bacteria to conventional antibiotics represents a severe global emergency for human health. The broad-spectrum antibacterial activity of silver has been known for a long time, and silver at the nanoscale shows enhanced antibacterial activity. This has prompted research into the development of silver-based nanomaterials for applications in clinical settings. In this work, the synthesis of three different silver nanoparticles (AgNPs) hybrids using both organic and inorganic supports with intrinsic antibacterial properties is described. The tuning of the AgNPs' shape and size according to the type of bioactive support was also investigated. Specifically, the commercially available sulfated cellulose nanocrystal (CNC), the salicylic acid functionalized reduced graphene oxide (rGO-SA), and the commercially available titanium dioxide (TiO2) were chosen as organic (CNC, rGO-SA) and inorganic (TiO2) supports. Then, the antimicrobial activity of the AgNP composites was assessed on clinically relevant multi-drug-resistant bacteria and the fungus Candida albicans. The results show how the formation of Ag nanoparticles on the selected supports provides the resulting composite materials with an effective antibacterial activity.

9.
Plants (Basel) ; 12(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36679069

RESUMO

BACKGROUND: Candida auris represents an emerging pathogen that results in nosocomial infections and is considered a serious global health problem. The aim of this work was to evaluate the in vitro antifungal efficacy of Cinnamomum cassia essential oil (CC-EO) pure or formulated in polycaprolactone (PCL) nanoparticles against ten clinical strains of C. auris. METHODS: nanoparticles of PCL were produced using CC-EO (nano-CC-EO) and cinnamaldehyde (CIN) through the nanoprecipitation method. The chemical profile of both CC-EO and nano-CC-EO was evaluated using SPME sampling followed by GC-MS analysis. Micro-broth dilution tests were performed to evaluate both fungistatic and fungicidal effectiveness of CC-EO and CIN, pure and nano-formulated. Furthermore, checkerboard tests to evaluate the synergistic action of CC-EO or nano-CC-EO with micafungin or fluconazole were conducted. Finally, the biofilm disrupting activity of both formulations was evaluated. RESULTS: GC-MS analysis shows a different composition between CC-EO and nano-CC-EO. Moreover, the microbiological analyses do not show any variation in antifungal effectiveness either towards the planktonic form (MICCC-EO = 0.01 ± 0.01 and MICnano-CC-EO = 0.02 ± 0.01) or the biofilm form. No synergistic activity with the antifungal drugs tested was found. CONCLUSIONS: both CC-EO and nano-CC-EO show the same antimicrobial effectiveness and are potential assets in the fight against C. auris.

10.
Microbiol Res ; 263: 127152, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944357

RESUMO

Antibiotic resistance is a serious health and social problem that will have a substantial impact in the coming years on the world health and economy. Thus, the increasing demand for innovative antibiotics, has prompted many researchers in the medical, microbiological, and biochemical fields to exploit the properties of antimicrobial peptides (AMPs). When properly used, designed, and conveyed, AMPs can really represent a valid alternative to conventional drugs especially in situations that are particularly difficult to treat such as chronic infections found in Cystic Fibrosis (CF) patients. In this review we focused on the applications of AMPs in the specific field of CF, illustrating different types of peptides from natural, naturally modified, synthetic as well as the different strategies used to overcome the barriers, and the physiological conditions in which AMPs must operate.


Assuntos
Infecções Bacterianas , Fibrose Cística , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Antimicrobianos , Infecções Bacterianas/tratamento farmacológico , Fibrose Cística/tratamento farmacológico , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
11.
Mycoses ; 65(12): 1127-1136, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35842900

RESUMO

BACKGROUND: Onychomycosis (OM) accounts for about 50% of nail disorders in industrialised countries. Essential oils (EOs), aromatic natural compounds, are known for their antimicrobial activity. OBJECTIVE: The aim of this work was to evaluate the antifungal efficacy of seven EOs and a commercial MIX against 10 dermatophytes responsible for OM to select the most effective ones to be included in a preventive or curative formulation based on a green natural nail polish (GNNP). METHODS: Micro-broth dilution tests in line with EUCAST guidelines and olfactory satisfaction test were performed to select the best natural compounds previously analysed by SPME coupled with GC-MS. The same method was used to evaluate the release over time of the active compounds present in the two modified-GNNPs made by adding the best natural compound selected (the C. citratus EO) and the MIX. Furthermore, to evaluate the preventive and curative activity of modified-GNNPs, ex vivo experiments on healthy or colonised nails were performed. RESULTS AND CONCLUSIONS: Data showed that MIX-modified-GNNP had preventive activity as it inhibits the fungal growth by releasing its active ingredients for 7 days, while the OE-modified GNNP acts as a natural drug showing cytocidal activity on nails colonised by dermatophytes, but it requires two weekly applications.


Assuntos
Óleos Voláteis , Onicomicose , Humanos , Onicomicose/tratamento farmacológico , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Polônia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Unhas
12.
Nanoscale ; 14(28): 10190-10199, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35796327

RESUMO

The engineering of the surface of nanomaterials with bioactive molecules allows controlling their biological identity thus accessing functional materials with tuned physicochemical and biological profiles suited for specific applications. Then, the manufacturing process, by which the nanomaterial surface is grafted, has a significant impact on their development and innovation. In this regard, we report herein the grafting of sugar headgroups on a graphene oxide (GO) surface by exploiting a green manufacturing process that relies on the use of vibrational ball mills, a grinding apparatus in which the energy is transferred to the reacting species through collision with agate spheres inside a closed and vibrating vessel. The chemical composition and the morphology of the resulting glyco-graphene oxide conjugates (glyco-GO) are assessed by the combination of a series of complementary advanced techniques (i.e. UV-vis and Raman spectroscopy, transmission electron microscopy, and Magic Angle Spinning (MAS) solid-state NMR (ssNMR) providing in-depth insights into the chemical reactivity of GO in a mechanochemical route. The conjugation of monosaccharide residues on the GO surface significantly improves the antimicrobial activity of pristine GO against P. aeruginosa. Indeed, glyco-GO conjugates, according to the monosaccharide derivatives installed into the GO surface, affect the ability of sessile cells to adhere to a polystyrene surface in a colony forming assay. Scanning electron microscopy images clearly show that glyco-GO conjugates significantly disrupt an already established P. aeruginosa biofilm.


Assuntos
Grafite , Pseudomonas aeruginosa , Biofilmes , Grafite/química , Grafite/farmacologia , Monossacarídeos
13.
Microorganisms ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35456755

RESUMO

The essential oils (EOs) of Origanum compactum and Satureja montana chemotyped (CT) at carvacrol, two Thymus vulgaris CT at thujanol and thymol, and Hydrolates (Hys) of S. montana and Citrus aurantium var. amara were chosen for studying their bactericidal efficacy against few phytobacterial pathogens. The Minimal Inhibitory Concentration (MIC) and Bactericidal Concentration (MBC) were found by microdilution assay. The essential oils of O. compactum (MBC 0.06% v/v), T. vulgaris CT thymol (MBC 0.06% v/v), and Hy of C. aurantium (MBC 6.25% v/v) resulted in being the most effective against Erwinia amylovora; thus, they were used as starting concentrations for ex vivo assays. Despite the great in vitro effectiveness, the disease incidence and the population dynamic ex vivo assays showed no significant results. On the other hand, EO of O. compactum and Hy of C. aurantium (at 0.03% and 4.5% v/v, respectively) showed resistance induction in tomato plants against Xanthomonas vesicatoria infections; both treatments resulted in approximately 50% protection. In conclusion, EOs and Hys could be promising tools for agricultural defense, but further studies will be necessary to stabilize the EOs emulsions, while Hys application could be an effective method to prevent bacterial diseases when used as resistance inducer by pre-transplantation treatment at roots.

14.
Microorganisms ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35208660

RESUMO

A modern painting is characterized by multi-material bases extremely exposed to biodeteriogenic attacks. The aim of this work was to test the antifungal effectiveness of a natural, eco-friendly, and safe emulsion based on Citrus aurantium L. var. amara hydrolate and Cinnamomum zeylanicum Blume (from bark) essential oil, named "Zeylantium green emulsion" (Zege), on modern paintings. Colored unaged and aged canvas samples, performed with modern techniques (acrylic, vinylic and alkyd), were used to test in vitro both the antifungal effectiveness of Zege and its impact on the chemical-physical characteristics. Microbiological tests were performed according to the EUCAST international guidelines. pH measurements and colorimetric analysis were performed on unaged and aged canvases before and after Zege spray treatment. Finally, in situ tests were performed using the spray emulsion on canvas samples obtained from Ilaria Margutti's modern artwork, which had been colonized by molds. Microbiological tests on canvas prototypes showed a time- and dose-dependent effectiveness of the Zege spray. None of the techniques underwent relevant changes in pH. Only the acrylic colors were unaffected in the colorimetric analysis, among all colored unaged or aged canvases. Tests made with modern artwork samples confirmed the in situ antifungal effectiveness. The Zege spray showed encouraging results in regard to the use of this formulation in the restoration of modern paintings.

15.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216297

RESUMO

The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.


Assuntos
Antifúngicos , Candida , Animais , Antifúngicos/química , Antifúngicos/farmacologia , Biofilmes , Candida albicans , Humanos , Larva , Lipopeptídeos/farmacologia , Mamíferos , Testes de Sensibilidade Microbiana
16.
J Fungi (Basel) ; 8(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35205894

RESUMO

Preserving artworks from the attacks of biodeteriogens is a primary duty of humanity. Nowadays, restorers use chemicals potentially dangerous for both artworks and human health. The purpose of this work was to find a green and safe formulation based on natural substances with fungicidal activity to restore ancient oil paintings, particularly "Il Silenzio" (by Jacopo Zucchi) preserved at the Uffizi Museum in Florence, Italy. The study was divided into two phases. First phase (in vitro study): three essential oils (EOs) and four hydrolates (Hys) were analysed by GC-mass spectrometry and in vitro tested against six ATCC strains of molds. An emulsion based on the more active natural compounds was tested on aged and unaged canvases samples to evaluate both their fungicidal activity and the impact on chemical-physical parameters. Finally, an in vivo toxicity test performed on the Galleria mellonella model assessed the safety for health. Second phase (in situ application): the emulsion was sprayed on the back of the painting and left to act for 24 h. Biodeteriogens present on the "Il Silenzio" painting were microbiologically identified before and after the treatment. The emulsion formulated with C. zeylanicum EO and C. aurantium var. amara Hy showed the best antifungal activity both in vitro and in situ without altering the chemical-physical characteristics of paintings. Furthermore, no in vivo toxicity was shown. For the first time, a green antimicrobial emulsion based on Hy and EO, safe for operators, was used to decontaminate an artwork colonised by fungi before the restoration practices.

17.
Front Microbiol ; 12: 668274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421838

RESUMO

Research on the gut microbiome may help with increasing our understanding of primate health with species' ecology, evolution, and behavior. In particular, microbiome-related information has the potential to clarify ecology issues, providing knowledge in support of wild primates conservation and their associated habitats. Indri (Indri indri) is the largest extant living lemur of Madagascar. This species is classified as "critically endangered" by the IUCN Red List of Threatened Species, representing one of the world's 25 most endangered primates. Indris diet is mainly folivorous, but these primates frequently and voluntarily engage in geophagy. Indris have never been successfully bred under human care, suggesting that some behavioral and/or ecological factors are still not considered from the ex situ conservation protocols. Here, we explored gut microbiome composition of 18 indris belonging to 5 different family groups. The most represented phyla were Proteobacteria 40.1 ± 9.5%, Bacteroidetes 28.7 ± 2.8%, Synergistetes 16.7 ± 4.5%, and Firmicutes 11.1 ± 1.9%. Further, our results revealed that bacterial alpha and beta diversity were influenced by indri family group and sex. In addition, we investigated the chemical composition of geophagic soil to explore the possible ecological value of soil as a nutrient supply. The quite acidic pH and high levels of secondary oxide-hydroxides of the soils could play a role in the folivorous diet's gut detoxification activity. In addition, the high contents of iron and manganese found the soils could act as micronutrients in the indris' diet. Nevertheless, the concentration of a few elements (i.e., calcium, sulfur, boron, nickel, sodium, and chromium) was higher in non-geophagic than in geophagic soils. In conclusion, the data presented herein provide a baseline for outlining some possible drivers responsible for the gut microbiome diversity in indris, thus laying the foundations for developing further strategies involved in indris' conservation.

18.
ACS Appl Mater Interfaces ; 13(22): 26288-26298, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34038082

RESUMO

The custom functionalization of a graphene surface allows access to engineered nanomaterials with improved colloidal stability and tailored specific properties, which are available to be employed in a wide range of applications ranging from materials to life science. The high surface area and their intrinsic physical and biological properties make reduced graphene oxide and graphene oxide unique materials for the custom functionalization with bioactive molecules by exploiting different surface chemistries. In this work, preparation (on the gram scale) of reduced graphene oxide and graphene oxide derivatives functionalized with the well-known antibacterial agent salicylic acid is reported. The salicylic acid functionalities offered a stable colloidal dispersion and, in addition, homogeneous absorption on a sample of textile manufacture (i.e., cotton fabrics), as shown by a Raman spectroscopy study, thus providing nanoengineered materials with significant antibacterial activity toward different strains of microorganisms. Surprisingly, graphene surface functionalization also ensured resistance to detergent washing treatments as verified on a model system using the quartz crystal microbalance technique. Therefore, our findings paved the way for the development of antibacterial additives for cotton fabrics in the absence of metal components, thus limiting undesirable side effects.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Grafite/química , Nanoestruturas/administração & dosagem , Ácido Salicílico/química , Têxteis/microbiologia , Antibacterianos/química , Nanoestruturas/química , Têxteis/análise
19.
Appl Microbiol Biotechnol ; 105(8): 3277-3288, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33839797

RESUMO

Studies so far conducted on irritable bowel syndrome (IBS) have been focused mainly on the role of gut bacterial dysbiosis in modulating the intestinal permeability, inflammation, and motility, with consequences on the quality of life. Limited evidences showed a potential involvement of gut fungal communities. Here, the gut bacterial and fungal microbiota of a cohort of IBS patients have been characterized and compared with that of healthy subjects (HS). The IBS microbial community structure differed significantly compared to HS. In particular, we observed an enrichment of bacterial taxa involved in gut inflammation, such as Enterobacteriaceae, Streptococcus, Fusobacteria, Gemella, and Rothia, as well as depletion of health-promoting bacterial genera, such as Roseburia and Faecalibacterium. Gut microbial profiles in IBS patients differed also in accordance with constipation. Sequence analysis of the gut mycobiota showed enrichment of Saccharomycetes in IBS. Culturomics analysis of fungal isolates from feces showed enrichment of Candida spp. displaying from IBS a clonal expansion and a distinct genotypic profiles and different phenotypical features when compared to HS of Candida albicans isolates. Alongside the well-characterized gut bacterial dysbiosis in IBS, this study shed light on a yet poorly explored fungal component of the intestinal ecosystem, the gut mycobiota. Our results showed a differential fungal community in IBS compared to HS, suggesting potential for new insights on the involvement of the gut mycobiota in IBS. KEY POINTS: • Comparison of gut microbiota and mycobiota between IBS and healthy subjects • Investigation of cultivable fungi in IBS and healthy subjects • Candida albicans isolates result more virulent in IBS subjects compared to healthy subjects.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Disbiose , Ecossistema , Fezes , Humanos , Qualidade de Vida
20.
Antibiotics (Basel) ; 10(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669818

RESUMO

Essential oils (EOs) are peculiar phytocomplexes in the already widely varied world of natural bioactive substances [...].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...